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Abstract

It is known that the Mizuno-Todd-Ye predictor-corrector primal-
dual Newton interior-point method generates a duality-gap sequence
which converges quadratically to zero, and this is accomplished with
an iteration complexity of O(y/nL). Very recently the present authors
demonstrated that the iteration sequence generated by this method
converges, and this convergence is to the analytic center of the solu-
tion set. In the current work we show that within a finite number
of iterations the Newton corrector step can be replaced with a sim-
plified Newton corrector step and the resulting algorithm maintains
O(y/nL) iteration complexity, quadratic convergence of the duality-
gap sequence to zero, and convergence of the iteration sequence (how-
ever not necessarily to the analytic center). The simplified predictor-
corrector algorithm requires only one linear solve per iteration in con-
trast to the two linear solves per iteration required by the original
predictor-corrector algorithm.

1 Introduction and Preliminaries

The basic primal-dual interior-point method for linear programming was orig-
nally proposed by Kojima, Mizuno, and Yoshise {4] based on earlier work of
Megiddo [8]. This method can be viewed as perturbed and damped Newton’s
method applied to the first-order conditions for a particular standard form
linear program. They established linear convergence and an iteration com-
plexity bound of O(nL) for this basic algorithm. Soon after Mizuno, Todd,
and Ye [11] considered a predictor-corrector variant of the Kojima-Mizuno-
Yoshise basic algorithm. In their algorithm the predictor step is a damped
Newton step and the corrector step is a perturbed (centered) Newton step.
Hence one iteration of the predictor-corrector algorithm requires the solution
of two linear systems; essentially two Newton steps. Hence when comparing
convergence rate results they should technically be considered to be two-
step results. Mizuno, Todd, and Ye established linear convergence for their
predictor-corrector algorithm and a superior iteration complexity bound of
O(y/nL).

We now briefly give a chronological account of the development of fast
(superlinear) convergence for these primal-dual interior-point methods. We
refer to the Kojima-Mizuno-Yoshise method as the basic method, and to

2



the Mizuno-Todd-Ye method as the predictor-corrector method. When we
discuss convergence or convergence attributes of one of these methods we are
describing the convergence of the duality-gap to zero. This interpretation
has become standard in this area, even though convergence of the duality-
gap sequence does not imply convergence of the iteration sequence. The
convergence of the iteration sequence is certainly an important issue in its
own right and to some extent has been neglected. For an interesting result
concerning the convergence of the iteration sequence generated by the basic
method see Tapia, Zhang, and Ye [12]. For a definitive result concerning the
convergence of the iteration sequence for the predictor-corrector method see
Gonzaga and Tapia [3].

Zhang, Tapia, and Dennis [19] demonstrated that under certain assump-
tions the algorithmic parameters in the basic method could be chosen so that
superlinear convergence was obtained for degenerate problems and quadratic
convergence was obtained for nondegenerate problems. However, they did
not demonstrate that polynomial complexity would be retained. Zhang and
Tapia {18] demonstrated that the algorithmic parameters in the basic algo-
rithm could be chosen so that the polynomial complexity bound was main-
tained and superlinear convergence was obtained for degenerate problems,
while quadratic convergence was obtained for nondegenerate problems. Ye,
Tapia and Zhang [16] demonstrated that the predictor-corrector algorithm
was superlinearly convergent for degenerate problems and quadratically con-
vergent for nondegenerate problems while maintaining its O(,/nL) iteration
complexity. McShane [6] independently obtained a similar result. Up to
this point all superlinear convergence results assumed that the iteration se-
quence converged. Ye, Giiler, Tapia, and Zhang [15], and independently
Mehrotra [9], based on Ye, Tapia, and Zhang [16] demonstrated the surpris-
ing result that neither the nondegeneracy assumption nor the assumption of
iteration sequence convergence was needed for the quadratic convergence of
the predictor-corrector algorithm.

In this paper we add to the literature on the predictor-corrector algorithm
by demonstrating that its quadratic convergence and O(y/nL) complexity are
retained if one replaces the Newton corrector step with a simplified Newton
step, i.e., the Jacobian from the Newton predictor step is used also in the
computation of the corrector step. Hence the corrector step only requires a
back-solve, and the complete iteration only requires the solution of one linear
system. Actually the Newton corrector step cannot be replaced with a sim-



plified Newton corrector step at the beginning of the iterative process, but
only after a particular criterion is satisfied. We demonstrate that this crite-
rion will be satisfied within a finite number of iterations. We also show that
the simplified algorithm generates an iteration sequence which is convergent,
but not necessarily to the analytic center.

Recently Ye {14] was able to show that a variant of the Mizuno-Todd-
Ye predictor-corrector algorithm could be given that eventually did not re-
quire the corrector step. He demonstrated that this variant algorithm gave
subquadratic convergence (the ()-rate is two, but the @J,-factor may be un-
bounded). Hence Ye attains a convergence rate of two with an algorithm
which (eventually) only requires one linear solve per iteration. Our simpli-
fied Mizuno-Todd-Ye algorithm gives ()-quadratic convergence but requires
the solution of one linear system and an additional back solve per iteration.
It should be clear that any convergence rate analysis based on total number
of arithmetic operations per iteration will favor the Ye variant. It should also
be clear that numerical efficiency of an algorithm is determined by effective
number of iterations needed for numerical convergence and not convergence
rate alone.

The paper is organized as follows. In the remainder of this section we
introduce our notation and several fundamental background notions. In Sec-
tion 2 we discuss the primal-dual Newton step and the primal-dual simplified
Newton step and derive several properties concerning these two steps. Some
results on scaled projections from Gonzaga and Tapia will be collected in
Section 3. These results will be used in Section 5. The Mizuno-Todd-Ye
predictor-corrector algorithm is presented in Section 4. Section 5 begins
with the presentation of the simplified predictor-corrector algorithm and
then turns to establishing our convergence theory for the simplified predictor-
corrector algorithm. In Section 6 we make some observations that imply that
quadratic convergence is optimal for both the predictor-corrector method and
its simplified variant. We indicate that cubic convergence might be obtained
by appropriately modifying the corrector step.

Given a vector ,d, ¢, the corresponding upper case symbol denotes (as
usual) the diagonal matrix X, D, ® defined by the vector.

We denote component-wise operations on vectors by the usual notations
for real numbers. Thus, given two vectors «,v of the same dimension, uv,
u/v, etc. denotes the vectors with components w;v;, u;/v;, etc. This notation
1s consistent as long as component-wise operations are given precedence over
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matrix operations. Note that uv = Uv and if A is a matrix, then Auv = AUv,
but in general Auv # (Au)v.

We frequently use the O(-) and (-) notation to express a relationship
between functions. Our most common usage will be associated with a se-
quence {z*} of vectors and a sequence {u*} of positive real numbers. In this
case = O(p), or ¥ = O(p*), means that there is a constant K (depen-
dent on problem data) such that for every k € IN, ||z*|| < Ku*. Similarly,
z = Qu), or z¥ = Q(u¥), means that there is ¢ > 0 such that for every
ke N, ||z*|| > eu*.

The primal and dual linear programming problems are:

minimize Tz
(LP) subject to Ax = b
x > 0,
and
maximize by
(LD) subject to ATy 4s = ¢
s > 0,

where ¢ € IR™, b € IR™, A € IR™*™. We assume that both problems have
optimal solutions, and that the sets of optimal solutions are bounded. This is
equivalent to the requirement that both feasible sets contain points satisfying
all inequality constraints strictly.

Given any feasible primal-dual pair (%, §), the problems can be rewritten

as
minimize &z
(LP) subject to Az = b
z > 0,
and
minimize i7Ts
(LD) subject to Bs = Bc
s > 0,

where BT is a matrix whose columns span the null space of A. Popular
choices for BT are an orthonormal basis for the null space of A and B = Py,
the projection matrix into the null space of A.



The feasible sets for (LP) and (LD) will be denoted respectively by P
and D. Their relative interiors will be respectively P° and D°.

The set of optimal solutions for the primal-dual pair of problems con-
stitutes a face F' = Fp X Fp of the polyhedron of feasible solutions, where
Fp and Fp are respectively the primal and dual optimal faces. By hypoth-
esis, this face 1s a compact set. It is well known that this face is char-
acterized by a partition {B, N} of the set of indices {1,...,n} such that
Fp={z€P|zy =0} and Fp = {s € D | sp = 0}. In the relative interior
of the face F', xg > 0 and sy > 0.

We study algorithms that converge to the optimal face. Our main concern
is with the behaviour of the iterates as they approach the optimal face. We
want this to happen in such a manner that all limit points are in the relative
interior of the optimal face. We shall see later on how this condition can be
enforced by requiring some adherence to the central path. For detail on the
central path see Gonzaga [2].

Given p > 0, p € IR, the pair (z,s) of feasible primal and dual solutions
is the central point (x(gu), s(p)) associated with g if

rs = e,

where e stands for the vector of all ones, with dimension given by the context.
The central path is the curve in IR?" parametrized by the positive real s,
le.,

poe (w(p), s(p))-
Thus (z,s) is a central point if and only if

xs = pe
Arx = )
Bs = Be ( 1 )
x,s = 0,

where the columns of BT span the null space of A.
The first-order or Karush-Kuhn-Tucker (KKT) conditions for problem
(LP) (or (LD)) are

xzs = 0

Axr = b

AT;I/ +s = ¢
x,s = 0
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The perturbed KKT conditions, for perturbation parameter p > 0, are

rs = e
Ar = b
AT:I/ + s — c (2)
x,s > 0.

Observe that the perturbed KKT conditions are merely the defining re-
lations for the central path and (2) can equivalently be written as (1). Es-
sentially all primal-dual interior-point methods for problem (LP) consist of
some variant of the damped Newton method applied to the perturbed KKT
conditions (1) or (2).

2 The Newton and Simplified Newton Steps

When dealing with an iterative procedure we will use the superscript 0 to
denote the previous iterate, no superscript to denote the current iterate, a
superscript of + to denote the subsequent iterate. In two-step algorithms
like the Mizuno-Todd-Ye algorithm described in Section 4 this notation will
apply to the current iterate, the intermediate iterate, and the final iterate.

Suppose that (2%, s?) and («,s) have been obtained from a form of New-
ton’s method and are both feasible pairs. The Newton step (or correction)
for (1) at (z,s) is given by (u,v) the solution of

v+ su = -8+ je
Au = 0 (3)
Bv = 0,

and the simplified Newton step for (1) at (z, s) is given by (u,v) the solution
of

v+ 5% = —as+ pe
Au = 0 (4)
Bv = 0.

It should be clear that the difference between (3) and (4) is that (3) uses
the Jacobian of (1) at (z,s) and (4) uses the Jacobian of (1) at (2°, s°).

We introduce some additional notation that will be used throughout the
paper. Given a pair (z,s), we define



;L(:I:,s; = :I:T;/r(z )

w(x,s) = as/p(x,s

§(x,s) = |lw(z,s)— el (5)
(x

o(x,s) = (yw(z,s)) L.

When no confusion can arise, we drop the reference to the variables, and
continue to use other symbols in a consistent manner. For instance, given a
pair (Z, 5), the parameters above will be denoted simply f, @ and &.

Given a pair (z,s), p(x,s) is the penalty parameter associated to (z,s),
in the following sense: if (z,s) is a central point, then xs = pe; otherwise p
is the penalty parameter associated with the central point that is nearest the
pair (z,s), in terms of a certain proximity measure. The vector w consists
of logarithmic barrier weights associated with (z,s). It characterizes the
weighted primal-dual affine scaling trajectory through (z,s), as studied by
Monteiro and Adler [11]. The scalar é is a measure of proximity from (z, s)
to the central point (z(x),s(r)). The definition of ¢ was made merely for
convenience; it will simplify expressions below.

At this point we are interested in obtaining usable closed form solutions
for the simplified Newton step and the Newton step. We also derive an
interesting property of the simplified Newton step. In what follows it is
important not to confuse y in (3) and (4) with p(x,s) given in (5), because
they are not necessarily the same. Hence p denotes the p in (3) and (4) and
u(x,s) means the p(x,s) given in (5). Since no confusion will arise in the
case of u°, we use ;° to denote p(z",s").

Proposition 2.1 The simplified Newton step (u,v) given by (4) can be writ-

ten

rs
u = 2Y¢°Pyxogod® <_—U + /—Of?)
A

” (6)
v = $"¢"Pixogd” (—2 + if)
e

10 -
where P = — P,

Proof. Assume that instead of (4), the simplified Newton equations are
written as

'+ su = —xs+pe , u€ N(A), veR(AT) (7)

8



where as usual M denotes null space and R denotes range space.
The solution is obtained by associating a scaling vector

d(z,s) = \/Z
S

Using the definitions in (5) and dropping argument references when no
confusion will arise

to each pair (z,s).

T x¢ w(x,s)
d=,/— = = 8
Ik Jilos) o )

The solution of (7) is obtained by scaling the problems by = (d°)~'z , 5 =
d’s :

0+ 3% = —T54 pe
u € N(ADY)
o € R(DV°AT)
The choice of this scaling becomes clear when we notice that by direct sub-
stitution,

¥ =5 = VaOs0 (9)

Dividing the equation by 5 and using the definitions of scaled variables,

T d°

U+ =——5+ p(z°)7t = E(—:cs + pe).
Hence u and v are the components of the right-hand side in the complemen-
tary subspaces, the null space and row space of AD°, and are given by

~ d°
i = PADOj(——.’L‘S-F[I,G)

N (Ilo (10)
v o= PADOF(—:1:5+/L6),

where Pypo = I — Pypo. Finally, u = d°% and v = (d°)1o.
A convenient formulation is obtained by substituting d°® =

—j—jxoqﬁo and

(d°) ! = ﬁ.s(’(ﬁo, and this leads to (6). n
m
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The simplified Newton step and the Newton step satisfy an interesting
property. This property will turn out to be fundamental to the analysis
presented in Section 5. Hence we derive this property in a form which covers
both the simplified Newton step and the Newton step.

Proposition 2.2 Let (&,3) and (v, s) be feasible pairs. Consider 2t = z+u
and st = s + v where (u,v) satisfies

v+ Su=—(1—%)xs + jie
UEN( )
v € R(AT) .

Then
p(at oty = Ap(e,s) + i . (11)

Proof. Left multiplying by e, we obtain
iTo 4+ 8Tu = —(I=A)ats+np.

From the definition
T
et st =aTs + 't + sTu )

since wTv = 0. But #7v = 270, because & — = € N(A) and v € R(AT), and
similarly 8"« = sTu. Substituting in the expressions above we immediately
obtain (11). |

3 Scaled Projections

In this section we collect some results on scaled projections from Gonzaga
and Tapia [3]. These results are extensions of results published by Megiddo
and Shub [8]. We use IR, to denote the nonnegative reals, and R;; to
denote the positive reals.

Consider the primal feasible set for (LP),

P={ze R"| Az =b,x > 0}
and the map h defined for d € IR?, d # 0 and p € R™ by

(da /)) = h(da /)) = PADP? (12)
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where P4p represents the projection matrix into the null space of AD.

We study the behaviour of this map when d > 0,d — d and p — p, where
d>0,d#0,and j € R".

Given d, we define the index sets B = {i = 1,...,n | d; > 0} and
N ={i =1,...,n | d; = 0}. The variables with indices in B are called
the “large variables,” and the others are called the “small variables.” It is
difficult to describe the behaviour of the small variables hy(d, p) of the scaled
projection defined above. The theory of Megiddo and Shub concerns the large
variables hp(d, p). We shall describe this theory conveniently extended to fit
our needs. The following proposition is Lemma 3.2 of Gonzaga and Tapia[3].
We refer the reader to that paper for the proof.

Proposition 3.1 Let h(d,p) be given by (12). Consider (d,p) € IR} x
R",d#0, and (dk,p'i') € IR} x IR" such that (d*, p*) — (d,p). Then

(i) hp(d*, p*) — hp(d,p) = Ps,pps.

(ZZ) [fﬁN = 0, then hN(dk,/)k) — 0.

Consider compact sets I' C IR" and A C IR, such that for any d € A,
dg > 0 and dy = 0, where {B, N} is a partition of {1,...,n}. We now
extend the proposition above for the case of sequences {d*} in IR}, and

{p*} € R" such that d* - A and p* - T *.

Proposition 3.2 For the situation described above we have the following:

() If & — A and p* - T, then

he(d*, p*) - PABD’gp]LC? — 0.
(ie) If & - d € A and p* — p €T, then

he(d*, p") — Payp,im — 0.

Proof. Implication (ii) follows from (i), since for convergent sequences
PABDg/’kB — Py, p,PB-

To prove (i), assume by contradiction that there exists ¢ > 0 and se-
quences {d*} in IR?_ and {p*} in IR" such that for k = 1,2, ...

1hB(d*, p*) = Py, py phll > €. (13)

* A sequence {z*} converges to aset Z if d(z*, Z) — 0, where d(z*,Z) = inf ¢z 1% —2|].
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Since the sequences {d*} and {p*} converge to compact sets they must be
bounded. Hence they have accumulation points d, p, such that for some

KcN,d %, d and o" -, p. From the fact that de converges to A and
p* converges to I' and the compactness of A and ', d € A and j € T'. From
Proposition 3.1,

he(d*, ) = Py, p, 5,
and since Dg > 0,

PABDg/’g - PypppiB.

Subtracting these last expressions we see that
ko k k_K
hp(d, p") — PABDgP — 0,

contradicting (13) and completing the proof. n
Now we present two facts related to projections and slightly shifted scal-
ings.

Proposition 3.3 Let ¢ € RN be such that ||q — e|| < a, a € (0,0.25),
and consider the projections h = Pyp , h = qPagqp. Then ||h—h) < 3a||A||.

Proof. See [3]. |

Given a vector z € IR’} _, the following map defines a norm

h € R" — ||kl = ||z~ A].

This is the Euclidean norm of the vector corresponding to h after a scaling
h = 2~ h. This norm is very usual in interior- -point methods.

The following result shows that all scaled norms for z in a compact set
in the interior of the positive orthant are uniformly equivalent.

Proposition 3.4 Let A C IRy be a compact set. Then there is a number
I' > 0 such that for any h € R", x € A,

1

plell < lialle < TiA].

Proof. By definition, given = € A, ||h||, = |[z7*h|. We immediately
obtain
mm 7R < b < ,max IR

i=1,...,7
Since x; , © = 1,...,n are bounded and bounded away from zero for z € A,
the scalar I' must exist, completing the proof. | |
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4 The Mizuno-Todd-Ye Algorithm

The Mizuno-Todd-Ye (MTY) algorithm is a path-following predictor-corrector
algorithm. All activity is restricted to a region near the central path, i.e., all
points (z,s) generated by the algorithm satisfy

s

6(x,s) = lw(x,s) —el| = ”ﬂ(w s)

—e| < a,

where « € (0,0.5).
We shall describe a typical iteration of the algorithm and list its proper-
ties. Complete proofs can be found in Mizuno, Todd, and Ye [10].

Given a = 0.1, a typical iteration begins with feasible (2, s") such that

§(2°,s%) = Jw® —e]| < on/\/§.

Predictor step: Given (z", s°) compute the (affine-scaling) step (u°, v°) and
let # = 2% 4+ 4% s = s 4 0%, where (u°,v?) is defined by

2% 4 %4’ = —(1 — 7)2%°, u’ € N(A), v° € R(AT),

with v € [0,1) such that §(z,s) = ||w(x, s) — €]| < a. (The specific choice of
v will be discussed below.)

Corrector step: Given («,s) compute the (centering) step (u,v) and let
xt = +u, st = s+ v, where (u,v) is defined by

xv + su = —as + pe, u€ N(A),v € R(AT)

with g = pu(z,s).

Observe that our « in the predictor step is effectively a steplength pa-
rameter. To see this let us denote the predictor step by (u°(7),v°(y)) and
let # =1 —~. Then

0(u’(0),0°(0)) = (u’(7), vo(7))

*The original paper uses & = 0.5. We shall use a convenient value of 0.1, since this
simplifies some formulas ahead.
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and

(2,8) = («°,5°) + 0(u®(0),7°(0)) 5
which is the usual way of writing the MTY predictor step. The usual choice
for 0 is 0%, the largest 6 € (0, 1] such that §(2(8),s(0)) < aforall 0 < 8 < 6%,
For further detail see, for example, Section 2 of Ye, Guler, Tapia, and Zhang
[15]. Hence our choice for v in the predictor step is v = 1 — ¥, and can be
viewed as the smallest v € [0,1) in the sense just described.

Mizuno, Todd, and Ye [10] prove that the algorithm is well defined, in the
sense that the centering step produces (zt, st) such that §(z*, s7) < o?/V/2.
Ye, Giiler, Tapia, and Zhang [15] (and independently Mehrotra [9]) prove
that the duality-gap (or equivalently the parameter 1) converges to zero Q-
quadratically, i.e.,

2
pt = (e, sT) = O(u™).

Using Proposition 2.2 with (#,38) = (2%,s%), 4 = v, and ji = 0, we see

that for the corrector step

pl,s) = yu(a’,s") .

Using Proposition 2.2 with (Z,3) = (z,s), ¥ =0, and i = yu(z°,s%), we see
that for the corrector step

pla®,sT) = ypu(a®, s°) .

So, on one hand we have p* = O(;*°) and on the other hand we have
pt = yu®. It follows that
1= 0(1°).

Bounds on the quantities appearing in the algorithm are given in the
propositions below. Let {B, N} be the optimal partition for the linear pro-
gramming problem, i.e., the index partition associated to the optimal face.
It is well known (see Adler and Monteiro [1]) that the central path ends at
the analytic center of the optimal face, and that the pairs (z,s) such that
lw(z,s) —e|| < a constitute a neighborhood of the central path correspond-
ing to the bundle of w-weighted affine-scaling trajectories for w such that
lw —e€|| < a. For a small, the bundle of trajectories ends in a compact
neighborhood of the analytic center of the optimal face, contained in the
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relative interior of the face. Namely, the end points in the primal optimal
face are the w-weighted centers given by

" (w) = argmin {Z w;log ;| Agrg = b} .

1€B

Hence, the algorithm behaves as follows. As the optimal face is approached
(and this happens in polynomial time), 2% — 0, s§ — 0 and 2%, s, remain
in small neighborhoods of «} and s}, the analytic centers of the primal and
dual optimal faces.

Actually, it is always true that z¥ — 2* | s¥ — s*, due to the results
proved in Gonzaga and Tapia [3], which we describe.

As was stressed in the beginning of Section 6 of Gonzaga and Tapia [3],
1t is important to realize that our estimates do not require (m°k+l,sok+1) to
be related to (z*", s+k), Le. (:L‘Ok, s%") does not have to be generated by the
MTY algorithm. All that is required is that (.I‘Ok, sok) satisfy the condition
w||(:c0k, sok) —¢]| < a, for the appropriate choice of a. Hence in what follows
in this section and in Section 5 we employ this broad interpretation when
discussing quantities generated by the MTY algorithm or the simplified MTY
algorithm for only one iteration.

Proposition 4.1 Consider quantities generated by the MTY algorithm. Then

() v =0(u), sp=0(n), 2y =0(’), sy = 0(u°)
(W)  u® =0, o' =0(u°)
(i) un =O(s) . i = O(p)

Proof. See Lemma 5.1 of [3]. n

The proposition above shows that the variations in (z, s) due to either an
MTY predictor or corrector step are bounded by O(u°), with exception of up
and vy. These are the variations in the large variables due to the corrector
step.

The following proposition is the main result in Gonzaga and Tapia [3]. It
is related to the map that associates to a pair (2, s°) the pair (2%, s7) result-
ing from a MTY iteration. The proposition says that near the optimal face,
a MTY iteration causes the large variables to approach the large variables
of the analytic center (2*, s*) of the optimal face. The proposition describes



only the behaviour of the primal variables; the dual variables behave in a
similar fashion, due to the symmetry of the optimality conditions (1).
The approach to the center is measured in the norm relative to «%, defined

for h € ™ by ||hall. = | (v3) " hs].

Proposition 4.2 Consider a sequence (not necessarily generated by the algo-
rithm) (Q:Ok, sok) of primal-dual pairs such that 5(;L'Ok, sok) < 0.1 and ,uok — 0.
Then there exists a sequence of positive reals {€*} such that ¢* — 0 and for
suffictently large k,

k k
leg — a3l < max{e*,0.8]|z% — a}l.}-

Proof. See Lemma 6.2 of [3]. i

This result implies that the iterates approach (z*,s*) and thus the se-
quence generated by the algorithm converges to the central optimum.

We are now concerned with bounding the sum of the variations (correc-
tions) made to either the z-variable or the s-variable in either the predictor
step or the corrector step in all iterations. The variation in x due to a pre-
dictor step is u°. By the total variation in x due to predictor steps we mean
Sk ||u0k]]. If we do not mention predictor steps or corrector steps we mean
both steps. Analogous terminology is used for corresponding situations.

Proposition 4.3 Consider quantities 2O Ok, z*
MTY algorithm starting at (z°',s*").

Then

$ , etc. generated by the

3

(i) Tz 1" = 0.
(1t) The total variation in xy and in sg is bounded by O(/t”l).

(7ii) The total variation in xp and in sy due to predictor steps is bounded

by O(,uol).

Proof. To prove (i), it is enough to show that for some constant 4 € (0, 1),
pF1 < Buk. This was shown by Mizuno, Todd, and Ye [10] when proving
the polynomiality of the algorithm. Now (ii) and (iii) are direct consequences
of Proposition 4.1, completing the proof. | |
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5 The Simplified Mizuno-Todd-Ye Algorithm

The simplified MTY algorithm is the MTY algorithm with the Newton cor-
rector step replaced by a simplified Newton step. This means that the com-
putation of the projections in (6) for the corrector step are reduced to a back
substitution, instead of a complete solution of the system.

We now state the complete algorithm.

VAN

Algorithm 5.1 Given o < 0.1, and feasible (z°, s°") such that §(z°", s°")

2
%, set k=1.
REPEAT
k koo
%= a2, 80 =50 pb = p(al, sY).
Predictor: Given (z°,s°) compute (u? v%), and let z := 2° + u°, s :=
5% + v° where (u°, 0") satisfies

290 + %0 = —(1 — 4)2%",  u® € N(A), v° € R(AT),
and v is as in the MTY predictor step.

Simplified Corrector: Given (z,s) set p := p(wx,s). Compute (a,0)
satisfying
1% + 5% = —ws + pe, 0 € N(A), v € R(AT),

and set 2t =2 410, st 1= s+ 9.

Safeguard: If 6(z*,st) > /2, then discard (z*, s*) and compute the
Newton corrector step
v+ su = —zs+pe, u€ N(A),ve R(AT),
and set 7 := a4+ u, st =54 v.
Subsequent iterate:
aOF T = gt OFTL = gt

b

k:=Fk+1

UNTIL convergence.

Before we formally state the convergence properties that we have derived
for the simplified predictor-corrector algorithm, there is value in collecting
some fundamental observations. In what follows all quantities should be
indexed by k; however as we have been doing above we will not always write
the index k.
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Proposition 5.2 Let {(2°, s"), (z, s), (at,sT)F} be generated by the sim-
plified MTY predictor-corrector algorithm. Then

(i) o+7st = 275
(ii) 2Ts = ’}/SL'OT.SO
(iii) v = O(z*s°)

(iv) «Ts < (1 — —\/L){L‘OTSU for some & > 0 that does not depend on k.

[

Proof. The proof of (i) follows from Proposition 2.2 with (&, ) = (z, s),
4 =0, and & = p(z,s). The proof of (i1) follows from Proposition 2.2 with
(Z,8) = (2% 8%, (z,s) = (2%, s°), ¥ = v and i = 0. Both (iii) and (iv) follow
from Theorem 4.1 of Ye, Giiler, Tapia, and Zhang [15], once we observe that
their 3 is related to our « by the relationship 8 = § and their steplength 0
1s related to our v by the relationship § =1 — ~. [ |

The algorithm uses a simplified Newton iteration in the corrector step.
If the simplified corrector produces the reduction in the proximity é that
ensures the quadratic convergence of the algorithm, i.e., if 6(z*,s7) < /2,
then the step is accepted. Otherwise the simplified step is discarded and the
algorithm performs a Newton corrector step.

Two things must be proved: first that the iterates are still convergent,
not necessarily to the analytic center of the optimal face, and second, that
the safeguard cannot be activated more than a finite number of times.

The predictor step is the same as that for the MTY algorithm. Our
analysis will be based on a comparison of the simplified and exact corrector

steps. The conclusions will be the following: For points near the optimal face

(1) The simplified corrector step does not center the large variables. The
variation in zp and sy due to simplified steps will be bounded by O(u°).

(ii) The behaviour of the small variables 2 and sg tends to be identical
in both methods.

These two facts will be proved and then used to contradict the hypothesis

that the safeguard is activated an infinite number of times.
We begin by studying the behaviour of the large variables.
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Proposition 5.3 Consider the corrector directions (u*,v*) and (i, 0F) gen-
erated at iteration k of Algorithm 5.1 (independently of which one is actually

accepted by the algorithm). Then there exist a number K > 0 and sequences
{6%}, {6%} in Ry such that 6% — 0, 6% — 0 and

K(Jlonll +65).

lakll < v K(lusll +05)
Hence g = O(p°) and o5 = O(p°).

Proof. We shall prove the result for @%. The proof of the other result is
similar.

Dropping the index k for notational simplicity, the primal directions are
computed from (6):

. 0,40
@ = 2 ¢°Pyxogod” - 0
/l l‘
T s

u = 1¢PAX<1>¢<

Substituting g = v4°, we obtain for p = (_:1:3 + e),

u

~ = -’If()¢UPAX°<I>°¢OPa
u = xPPaxodp.

The points «* and 20 approach the relative interior of the optimal face,
converging to a small compact neighborhood of the central optimum z*. The
vectors ¢ and ¢° have the following bounds.
By construction, w; € [0.95,1.05], w; € [0.9,1.1]. Since ¢; = 1/,/w; by
definition, the following bounds can be easily checked:
¢° :
¢? €[0.97,1.03] , ¢; € [0.95,1.06] , € [0.92,1.08]. (14)
Thus 2°¢° and z¢ also converge to compact sets. Since ||p|| = 6(z,s) <
0.1, the vectors ¢p and ¢°p are also in compact sets, and we can use Propo-
sition 3.2 to obtain
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B!
up — tg¢pPayxpe,98p8 — 0.

The scaled projections above are almost in the format required by Proposition

3.3, on slightly shifted scalings. To put them in the desired format, let us

write

pp = tp(vp) " pB.

Due to Proposition 4.1, since 2 = (1), we have
op = %+ uh = (e + O()) (16)
It follows that (%)~ = 25" (e + O(1")). Thus
pp = a3 pale + O()) = ez ps + O().
Since O(u°) — 0, (15) can be written as

ZALB 0

o vpbuPagx000, 5525 P8 — 0, (17)
up — -’L'B¢BPABXB<I>Bfl?B¢Bfl?§1PB — 0. (18)
o

Defining ¢ =

— , we see from (14) and (16) that for u sufficiently small,
¢i €(0.9,1.1], and thus ||¢ — €]|oc < 0.1. Now (17) can be written as

&B ~1 ;
P 1¢BqPALx 050208 ©5 pB — 0. (19)

Deﬁning hB = qPABXBQBQ~'15B¢B(] .’L‘BI[)B, hB = PABXB®B$B¢B .’L'ElpB, we
see from Proposition 3.3 that

I — gl < 0.3||hs]|.
Dividing (18) by zp¢p, and using scaled norms, it follows that

[eBllepos — [[hB]l — 0. (20)
Subtracting (18) from (19) establishes that

ip
v

(I!B¢B

—ug .
+ hB - h’B - 07 (21)
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or (making the iteration indices explicit),

~k

u , 4
Iljf— —upllatge < I —hpll+or , of =0
< 0.3)|RE| + oF
< 0.3[ubllogn + 03,

where the last inequality comes from (20), with o — 0.
Using Proposition 3.4 twice to relate || - [[,x 45 and || -||, we see that there
exists a constant K; > 0 such that

0k

U , ;
117—5 —upll < Ki|lupll + 6
where 0¥ — 0. Finally,
{4% k T k
ll,y—kll < lupll + K llugpll + b5

The final statement follows from the fact that {u§} and {vg} are bounded,
and v = O(p°) from (iii) of Proposition 5.2.
|

Proposition 5.4 Consider the quantitics .’L’Uk, Sok, o*, ete. generated by
Algorithm 5.1, starting at (', s°"). Then

(i) The total variation in (x,s) due to simplified Newton steps is bounded
by O(,u01 )

(ii) The sequences {(z**, %)} and {(*,s*)} converge to a pair (z,3) in
the optimal face.

If the safequard is activated an infinite number of times *, then (Z,3) =
(z*,5%), the central optimal pair. Otherwise (%,3) is not necessarily equal to
(z*, s%).

Proof. (1): Recall that u(x,s) = yu(z° s") and apply Proposition 2.1
with g = vu° to obtain

i = 2"’ Pyxogo ¢’ p

*We shall prove below that this hypothesis is vacuous, but it will be needed to establish
a contradiction.
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and i

b = v5"¢" Paxogo¢’p
where p = (—‘%"—{—e). Since §(x,s) < 1, we see that ||p]| = é(z,s) < 2.
Moreover, since §(2°, s%) = ||w(a’, s°) —e|| < 3 we see that the components of
w(z?, s°) are contained in [%, %], hence the components of ¢° are contained in

[\/g, V2 ] . Also the sequence {(.’L’Uk, sok} is bounded, and projection operators
are bounded. It follows from the above expressions and the fact that all
quantities are bounded that @& = O(y) = O(p®) and & = O(y) = O(p°).

(ii): If the safeguard is activated a finite number of times, the conclusion
follows from (i), because then the sequences generated by the algorithm are
Cauchy sequences. Otherwise, the convergence proof is similar to the prootf
for the MTY algorithm, presented in Gonzaga and Tapia [3].

We shall prove the result for the primal variables. The proof for the
dual slacks is similar. Also, it is enough to prove that U x*, since

ok ok
u’” =0(p") — 0.

Assume by contradiction that the sequence {rcok} has an accumulation

point Z # x*. Since Ty = a3 = 0, we have

o =|zg — 25|l > 0.

Let KL C IN be the set of iterations in which the safeguard is activated (MTY
iterations). Our first step is to show that Z must also be an accumulation
point of (:L'Ok)ke,(;.

Let Ky C IN be a subsequence such that AN &, and let j(k) be the first

index in K greater than or equal to k. Then for any k € X, ”.’L’Oj(k) — :I;Ok|| =

O(,uok) by (i), and thus 2*'*) 24, % Thus it is enough to consider in our
assumption subsequences in K.

Let {€¥} be the sequence given by Proposition 4.2, and let k be such that
for k > k the conclusions of that proposition are valid and € < 0.50. ‘

Choose an index j > k with the following characteristics: j € K, ||z%’ —
zhll« < l.lo, and the total variation of z due to simplified steps after j
satisfies

Z “.’L’Uk+1 — :(:Uk”* < 0.050. (22)

kK
k2j
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Such an index exists by definition of o and by (i). We shall prove by induction
that for k € K, k > j, ||:1:%k — 23|« < 0.950.

(a) |25’ =25l < 0.8x1.16 < 0.90 by Proposition 4.2. Let &' = j(j+1)
be the next index in K. Using (22),

22F g . < |2} T + |2 F g0t « < 0.950.
B B B B B B

(b) Assume that for an index k € K, k > j, ||:L'OBIC — ag|l« < 0.95¢0. Then

by Proposition 4.2, ||rc%k+1 —2g|« < ma.x{e’“,0.8||:1:%]C —zg|l«} < 0.90. Asin
(a), using(22), let k' = j(k + 1) be the next index in K:

) k! . k+1 . % k+1
o™ — ™|l <o —a*|« + ||1:% — .’L‘% I < 0.950.

(a) and (b) prove that for all k € K, k > j, H.’L‘UBk — zgll« < 0.950,
contradicting the fact that o is an accumulation point of the sequence (H:L’%k -
zg|l«)kex, and completing the proof. |

Having described the behaviour of the large variables, we can now com-
pare the small variables for the exact and simplified Newton corrector steps.

At a typical iteration, the simplified step (u,v) and the exact step (4, 0)
satisfy the equations below:

7.0 0 _ .

Tgup + SgUp = —IBSB + ER (23)
;

.”L'(I)V’UN + 3,’\,uN = —INSN + pen

rpUp + splig = —xpBSp+ jep (24)

TNON + SNUN = —INSN + pen

where pp = yu® , v = O(p?).

Before we state the main result, we establish some relationships within a
typical iteration:

(i) (Large variables) Since v = O(u") , v* = O(p") and all components
of zg and sy are bounded away from zero,

w% = ug(e + O(/LU)) ) QON = sy(e + O(,uo)) (25)
(ii) (Small variables) By construction,
s’ = pluw’
s o= pw,

23



where w? € {0.95,1.05] , w; € [0.9,1.1], 2 =1,...,n. Dividing these expres-

sions,

2 lsywl s lapuwh

N Y 85)\7 wN ’ SB Y ’L% we

From (25), it is immediate that sy/s% = (e + O(p°)), and zp/z% = (e +
O(u°)). By a simple calculation, w}/w; € [0.85,1.17],2 =1,...,n.
Defining

0 0

SN W rp w

.SN wy Ty WR
it follows that for sufficiently small ;°,

o; € [0.8,1.2]
and we can write
(0] l 0 1
Ty = ;(TN.’I:N , Sg = —OBSB. (26)

Proposition 5.5 Consider an application of Algorithm 5.1. Then the safe-
guard cannot be activated an infinite number of times.

Proof. Assume by contradiction that the safeguard is activated at the
iterations with indices in an infinite set K.
From Proposition 5.4, the sequences (2°,s%)* and (z, s)* converge to the
analytic center (z*, s*) of the optimal face. It follows that
W -0, oF -0, (27)

Let us substitute the relations (25) and (26) into the Newton equations (23).
We shall analyse the first equation (indices in B); the analysis for the other
one is similar. Our approach is to compare the behaviour of the small vari-
ables in the simplified and exact corrector steps. To begin with

1
(e + O(u"))xpvp + ;O'BSBUB = —upsp + pep. (28)
Subtracting (24) from (28), and restoring the iteration indices,
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k . 1 ok \ ok
((e + O(u° )l — th)al = — (:Y—EUBtL’Z; - uB) Sg.
Taking norms,

(e + O(n"))oly — o)k || <

).

%) + 6%), where 65 — 0. Since
s8]lo = O(1*) by Proposition 4.1,

1
o (n@u%—kuu,@n ;

From Proposition 5.3, ||uf]l/7* < K{(
loBllo < 1.2 for sufficiently large &, and |

the inequality becomes

k ) . ) P
e + O(u™ )yl — k)l < OGH)(L2K ([l ] +0%) +

Ky (lig ]l + 67),

i)

<
<

where K; is a constant that depends on the problem data. Since 4% — 0 by
(27), and since 2% has all components bounded away from zero, we conclude
that

Ug - ,[)g O(/l’k),[)K

— 0
i pk P

(e +O(1"))

and since p* — 0,

o s
— — 0, —— —0. (29)
[ H
The second expression is obtained by a similar process, using the second
equation in (23).
Now we shall establish a contradiction. At a typical iteration, let

+  (z+u)(s+o) 0= (x +a)(s+0)

w' = y
I H

From the analysis of the MTY algorithm presented in Section 4, we see that

2
[ — e|| < 2= < 0.01 .

V2
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At any iteration k € X,

[t — ¢ > % > 0.05.

At such an iteration, either ||w} — en]|| > 0.02 or ||wh — ep|| > 0.02. Assume
that at an infinite number of iterations K; C K, |fwf — en| > 0.02 (the

analysis for the other case is completely similar).
Then for k € X4,

|wh —en|] > 0.02 , |ldny — en]| < 0.01
This implies that in these iterations.
|lwh —n|| = ||(wh —en) — (1dn — en)|| > 0.01 (30)

On the other hand, we have by definition,

pwl = (en+un) (sy + vn)
}MZ)N = (.’L‘N + ’lA/,N) (SN -+ IA)N)

Subtracting,
,u(wf\} —wn) = (en 4+ un) (sv +on) — (en + Gn) (sy + On).
Reordering terms in this expression, we obtain

. uy — N
—(

O O eN + N
wN_U)N—-— (

sy + ’UN) + UN — ZA)N)
7 7

Let us analyse the terms in the right-hand side (restoring the index k):

(i) By (29), “N =

o sk ok —o0.

(ii) By Proposition 4.1, a5 = O(p¥) and 4%, = O(i*).
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From (27), 9% — 0. From Proposition 5.3, vk — 0. Hence

k k
Ty +uy R
||—/7;—(vzv Xl < Kalloy, — oI,
where K, depends on problem data, and so this term converges to zero.
We conclude that (wj)F — &% — 0, contradicting (30), and completing
the proof. ||
We are now ready to formally state our convergence results.

Theorem 5.1 Let {(2°,5")*} and {(«,s)*} denote the sequences generated
by the simplified MTY predzctor corrector algorithm. Then

(1) The safequard in the corrector step is activated only a finite number of
times.

(ii) The algorithm has iteration complexity O(\/nL).
(iii) The duality-gap sequence {.’I?UT.S'U} converges quadratically to zero.

(iv) Both sequences {(2",s")} and {(x,s)} converge to a point (Z,3) in the
optimal face.

Proof. Property (i) follows from Proposition 5.5. Also (ii) follows from
(iv) of Proposition 5.2 in a standard manner. See Mizuno, Todd, and Ye [10]
for details. Property (iii) is a combination of (i), (ii), and (iii) of Proposition
5.2. Finally (iv) is (ii) of Proposition 5.4. |

6 Concluding Remarks

The fact that so much of Theorem 5.1 follows from Proposition 5.2 and
Proposition 5.2 depends so little on the corrector step leads us to take a
closer look at the role of the corrector step in our convergence theory.
Consider a typical simpliﬁed MTY predictor-corrector iteration repre-
sented by {(z°, s°), (,s), (z*, s*)}. The predictor step takes (z°, s°) to (z,s)
and the corrector step takes (z,s) to (zt, st). A close look at the derivation
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of our theory shows that for the establishment of O(y/nL) complexity and
quadratic convergence we only used the fact that the corrector step satisfies

(i) et st < aTs
and (31)
(i) &(xt,s™) < af2.

Hence any corrector step satistying (34) will lead to O(y/nL) complexity and
quadratic convergence, but not necessarily iteration sequence convergence.
It follows that quadratic convergence is the best that should be expected
from either the MTY algorithm or the simplified MTY predictor-corrector
algorithm. This is because for both these algorithms the corrector step does
not improve the duality-gap, i.e. Tt = 2Ts, and therefore the quadratic
decrease is obtained entirely from the damped Newton predictor step, and
quadratic decrease (in general) is optimal for a (damped) Newton method.
Clearly the same is true for any corrector step that does not decrease the
duality-gap.

We are accustomed to expect cubic decrease from the pair consisting of a
Newton step and a simplified Newton step and quartic decrease from the pair
consisting of two Newton steps. In order to attain these objectives along with
O(y/nL) complexity the predictor-corrector approach will have to be modified
so that the corrector step still satisfies (34) but also gives the appropriate
decrease in the duality-gap. For example if in the simplified corrector step
of Algorithm 5.1 we replace p with yu and the safeguard is activated only
a finite number of times, then we would obtain cubic convergence from the
simplified MTY algorithm. We did not pursue this issue in the present work.

The contribution of this paper is the demonstration that in the MTY
predictor-corrector algorithm the Newton corrector step can be replaced with
a safeguarded simplified Newton corrector step and all the algorithmic prop-
erties are maintained, except that the convergence of the iteration sequence
is no longer to the analytic center. Whether this loss is important or not
clearly depends on the application.
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